Зачем мне математика? А вот зачем!
Sep. 2nd, 2017 06:43 pm![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)

Наше возможное понимание детерминирующих условий весьма отлично от нашего возможного знания факта. Первое возникает из опыта бесчисленных поколений, но мы можем описать в функциональном языке эти условия не лучше, чем рыба могла бы описать воду. Нам необходимо, следовательно, использовать специальный язык, который должен, насколько это возможно, быть свободным от относительности бытия и разнообразия функции, и который выражает только абстрактные действия воли. Язык, обладающий этим свойством абстрактности – это математика.
Часто отмечалось, что существует своеобразное и тонкое соответствие между математическими операциями – которые кажутся чисто концептуальными и субъективными – и процессами во вселенной – которые выступают как объективные и несводимые к концептуальным формам. Это тем более примечательно, что анализ математическими средствами не может распутать даже самый простой случай, возникающий в нашем опыте. Язык математики имеет мало ценности, или совсем её не имеет, при описании факта, и, тем не менее, мы обнаруживаем в нём замечательную способность связывания и объединения субъективного опыта и объективной реальности.
Этот парадокс может быть разрешён, только если мы поймём, что математические символы означают не функциональные действия, но акты воли. Символ δ∫dS используется при определении пути, проходимого каким-либо телом при консервативном движении в силовом поле, но он не говорит нам, чем является тело или движение, и не описывает какое-либо событие. Рассмотрение таких символов должно убедить нас, что математика занимается единственно разделением возможных и невозможных действий и процессов. Связь не всегда является самоочевидной, но она всегда может быть раскрыта, если мы стремимся понять значение символа или операции безотносительно к какому-либо специфическому факту. Сила математического символизма заключается именно в том, что он даёт возможность описывать различные по функциональному характеру действия при помощи одного и того же символа. Более того, математические утверждения всегда имеют дело с возможностью или невозможностью оказий, безотносительно к вопросу о том, была ли или будет ли какая-либо частная оказия актуализирована. С давних времен на человека производило глубокое впечатление соответствие между математическими операциями, которые являются чисто ментальными и очевидно находятся под контролем нашего сознания, и физическими событиями, которые находятся вне нашего ума и не зависят от нашей воли. Математичность объективного мира есть данность, с которой мы должны считаться. Это не означает, что каждая функциональная проблема поддается математической обработке. Напротив, в том и заключается огромная трудность, что лишь малое число весьма специализированных оказий может быть адекватно выражено в математической символике. Тем не менее, мы остаемся убеждёнными в том, что математика может дать нам проникновение в физический мир, которого мы не можем получить при помощи только чувственного опыта. Более того, мы твёрдо верим, что за всей сложностью и "нематематичностью" нашего непосредственного опыта находится упорядоченная совокупность частиц и силовых полей, подчиняющаяся строгим математическим законам. Блуждая свободно и случайно в пустых ассоциациях, наши мысли остаются неразрывно связанными с физическими процессами в нашем мозгу, которые, как мы верим, могут быть выражены в терминах символизма математической физики. Необходимо подчеркнуть – и даже особо подчеркнуть – парадокс универсальной применимости математического символизма и нематематичности чувственного опыта, для того чтобы уяснить себе важность различения между математическими символами как языком воли и вербальными описаниями как языком функции.
Помня, что язык воли характеризуется использованием жестов, каждый из которых имеет уникальное значение в данный момент, мы можем предполагать, что математика имеет качество жеста. Так дело и обстоит. Каждый математический символ соотнесён с некоторым жестом. Например, тригонометрические функции – синус, косинус, тангенс – привлекают наше внимание как к универсальным отношениям в прямоугольных треугольниках, так и к свойствам бесконечных рядов. Было бы трудно или даже невозможно выразить посредством слов или знаков всё, что математик узнает в символе π. Она замещает число, которое само по себе уникально, но оно далеко от того, чтобы быть "просто" числом, так как оно выражает все наши представления о кругообразности и повторяемости, делая это с силой жеста, который был столь же полон значения для строителей пирамид, как он значим для современного математика или инженера. Мы, таким образом, привыкли обращаться с π скорее как с оператором, чем как с числом, но часто забываем про это, когда стремимся определить его значение.
Уравнение:
d²ψ / ds² + k²ψ = 0
даёт нам формы всех возможных вибраций, то есть событий, в которых возмущающая и восстанавливающая силы находятся в ритмическом равновесии. Это уравнение применимо в бесконечном множестве случаев, и их функциональное содержание не имеет ничего общего с действенностью уравнения. Математик понимает его значение без интерпретации в терминах функции или бытия. В этом заключается особый характер математического символизма, а именно то, что он является языком чистой воли, а не воли, на которую накладывается полное выражение функции и бытия, как в случае "практического языка". Следовательно, математика в истинном смысле – это язык системы координат, и он является полностью действенным только для угла пирамиды опыта, отмеченного на диаграмме 13.1* буквой W.
В строгом смысле слова математика не может быть "знаема", и недооценка этого является причиной многих трудностей, с которыми сталкиваются в математических исследованиях. Математика никак не касается качественного содержания опыта. Она может описывать, что возможно и что невозможно в ситуации данного типа, но ничего не может сообщить о том, что в этой ситуации "следует" и чего "не следует" делать. Точно так же она может сказать нам ни что представляют собой вещи, ни в какие оказии они входят, а только – для вещей, являющихся тем, что они есть – возможна ли данная ситуация. Исходя из этого, математика может рассматриваться как характеристический язык естественного порядка.
Джон Годолфин Беннетт. Драматическая Вселенная. Глава 5.13.3
Сбылась моя давняя мечта, и теперь на моей книжной полке стоят все четыре тома "Драматической Вселенной" Джона Годолфина Беннетта. (Для тех, кому это имя ничего не говорит, поясню: одним из его учителей был Георгий Иванович Гюрджиев, а одним из учеников - Роберт Фрипп.) В связи с этим вот вам целая глава из первого тома; помимо того, что она интересна сама по себе, она - ещё и подробный ответ всем тем, кого удивило моё неожиданное (в первую очередь для меня самого!) и страстное увлечение математикой, всем тем, кто считает это странным в моём не юном возрасте, а возможно, даже крутит пальцем у виска.
*См. главу 5.13.2, "Неисчерпаемость феноменов".